If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-16X-5120=0
a = 1; b = -16; c = -5120;
Δ = b2-4ac
Δ = -162-4·1·(-5120)
Δ = 20736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{20736}=144$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-144}{2*1}=\frac{-128}{2} =-64 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+144}{2*1}=\frac{160}{2} =80 $
| -(-8+n)=22 | | 3x-6x+18=x | | -400=20x | | 9x+20=3x+4 | | x+4x=x+2x+5x+2 | | -19=-3a-11 | | 4(3x+5)=16x+18-4x+2 | | 1.5=3.5x=43.75 | | (1+(r/2))^18=2.65 | | (x/3)-5=28 | | 9c-8c=8 | | 2x+7=4x−19 | | 3m−2m=15 | | 2(f-7)=18 | | 3.5x-10=-31 | | 3x+23+x-18+x=180 | | -4x+2=-4x-7 | | (0.75)(-5y)-y=8.25 | | 15.z=-77.5 | | 24+2x+14=3x+6 | | 12+2/3(9y-12)-4=1 | | $4b+3=-9$ | | t=19=2 | | 2(t+1)=11 | | x3=-64 | | 16-8y=24 | | 5.25+0.3m=7.8 | | -11p+7=40 | | 9x-6x=-6+18 | | 53=-6-17x | | 4x+8+7x=129 | | 7/8x+4=8 |